Copied to
clipboard

G = C22×C4×C12order 192 = 26·3

Abelian group of type [2,2,4,12]

direct product, abelian, monomial, 2-elementary

Aliases: C22×C4×C12, SmallGroup(192,1400)

Series: Derived Chief Lower central Upper central

C1 — C22×C4×C12
C1C2C22C2×C6C2×C12C4×C12C2×C4×C12 — C22×C4×C12
C1 — C22×C4×C12
C1 — C22×C4×C12

Generators and relations for C22×C4×C12
 G = < a,b,c,d | a2=b2=c4=d12=1, ab=ba, ac=ca, ad=da, bc=cb, bd=db, cd=dc >

Subgroups: 498, all normal (8 characteristic)
C1, C2, C3, C4, C22, C22, C6, C2×C4, C23, C12, C2×C6, C2×C6, C42, C22×C4, C24, C2×C12, C22×C6, C2×C42, C23×C4, C4×C12, C22×C12, C23×C6, C22×C42, C2×C4×C12, C23×C12, C22×C4×C12
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, C23, C12, C2×C6, C42, C22×C4, C24, C2×C12, C22×C6, C2×C42, C23×C4, C4×C12, C22×C12, C23×C6, C22×C42, C2×C4×C12, C23×C12, C22×C4×C12

Smallest permutation representation of C22×C4×C12
Regular action on 192 points
Generators in S192
(1 192)(2 181)(3 182)(4 183)(5 184)(6 185)(7 186)(8 187)(9 188)(10 189)(11 190)(12 191)(13 91)(14 92)(15 93)(16 94)(17 95)(18 96)(19 85)(20 86)(21 87)(22 88)(23 89)(24 90)(25 46)(26 47)(27 48)(28 37)(29 38)(30 39)(31 40)(32 41)(33 42)(34 43)(35 44)(36 45)(49 122)(50 123)(51 124)(52 125)(53 126)(54 127)(55 128)(56 129)(57 130)(58 131)(59 132)(60 121)(61 137)(62 138)(63 139)(64 140)(65 141)(66 142)(67 143)(68 144)(69 133)(70 134)(71 135)(72 136)(73 164)(74 165)(75 166)(76 167)(77 168)(78 157)(79 158)(80 159)(81 160)(82 161)(83 162)(84 163)(97 153)(98 154)(99 155)(100 156)(101 145)(102 146)(103 147)(104 148)(105 149)(106 150)(107 151)(108 152)(109 170)(110 171)(111 172)(112 173)(113 174)(114 175)(115 176)(116 177)(117 178)(118 179)(119 180)(120 169)
(1 109)(2 110)(3 111)(4 112)(5 113)(6 114)(7 115)(8 116)(9 117)(10 118)(11 119)(12 120)(13 148)(14 149)(15 150)(16 151)(17 152)(18 153)(19 154)(20 155)(21 156)(22 145)(23 146)(24 147)(25 137)(26 138)(27 139)(28 140)(29 141)(30 142)(31 143)(32 144)(33 133)(34 134)(35 135)(36 136)(37 64)(38 65)(39 66)(40 67)(41 68)(42 69)(43 70)(44 71)(45 72)(46 61)(47 62)(48 63)(49 165)(50 166)(51 167)(52 168)(53 157)(54 158)(55 159)(56 160)(57 161)(58 162)(59 163)(60 164)(73 121)(74 122)(75 123)(76 124)(77 125)(78 126)(79 127)(80 128)(81 129)(82 130)(83 131)(84 132)(85 98)(86 99)(87 100)(88 101)(89 102)(90 103)(91 104)(92 105)(93 106)(94 107)(95 108)(96 97)(169 191)(170 192)(171 181)(172 182)(173 183)(174 184)(175 185)(176 186)(177 187)(178 188)(179 189)(180 190)
(1 84 68 102)(2 73 69 103)(3 74 70 104)(4 75 71 105)(5 76 72 106)(6 77 61 107)(7 78 62 108)(8 79 63 97)(9 80 64 98)(10 81 65 99)(11 82 66 100)(12 83 67 101)(13 172 49 34)(14 173 50 35)(15 174 51 36)(16 175 52 25)(17 176 53 26)(18 177 54 27)(19 178 55 28)(20 179 56 29)(21 180 57 30)(22 169 58 31)(23 170 59 32)(24 171 60 33)(37 85 117 128)(38 86 118 129)(39 87 119 130)(40 88 120 131)(41 89 109 132)(42 90 110 121)(43 91 111 122)(44 92 112 123)(45 93 113 124)(46 94 114 125)(47 95 115 126)(48 96 116 127)(133 147 181 164)(134 148 182 165)(135 149 183 166)(136 150 184 167)(137 151 185 168)(138 152 186 157)(139 153 187 158)(140 154 188 159)(141 155 189 160)(142 156 190 161)(143 145 191 162)(144 146 192 163)
(1 2 3 4 5 6 7 8 9 10 11 12)(13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36)(37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60)(61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84)(85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108)(109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132)(133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156)(157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180)(181 182 183 184 185 186 187 188 189 190 191 192)

G:=sub<Sym(192)| (1,192)(2,181)(3,182)(4,183)(5,184)(6,185)(7,186)(8,187)(9,188)(10,189)(11,190)(12,191)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,85)(20,86)(21,87)(22,88)(23,89)(24,90)(25,46)(26,47)(27,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,121)(61,137)(62,138)(63,139)(64,140)(65,141)(66,142)(67,143)(68,144)(69,133)(70,134)(71,135)(72,136)(73,164)(74,165)(75,166)(76,167)(77,168)(78,157)(79,158)(80,159)(81,160)(82,161)(83,162)(84,163)(97,153)(98,154)(99,155)(100,156)(101,145)(102,146)(103,147)(104,148)(105,149)(106,150)(107,151)(108,152)(109,170)(110,171)(111,172)(112,173)(113,174)(114,175)(115,176)(116,177)(117,178)(118,179)(119,180)(120,169), (1,109)(2,110)(3,111)(4,112)(5,113)(6,114)(7,115)(8,116)(9,117)(10,118)(11,119)(12,120)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,156)(22,145)(23,146)(24,147)(25,137)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,133)(34,134)(35,135)(36,136)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,61)(47,62)(48,63)(49,165)(50,166)(51,167)(52,168)(53,157)(54,158)(55,159)(56,160)(57,161)(58,162)(59,163)(60,164)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,129)(82,130)(83,131)(84,132)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,97)(169,191)(170,192)(171,181)(172,182)(173,183)(174,184)(175,185)(176,186)(177,187)(178,188)(179,189)(180,190), (1,84,68,102)(2,73,69,103)(3,74,70,104)(4,75,71,105)(5,76,72,106)(6,77,61,107)(7,78,62,108)(8,79,63,97)(9,80,64,98)(10,81,65,99)(11,82,66,100)(12,83,67,101)(13,172,49,34)(14,173,50,35)(15,174,51,36)(16,175,52,25)(17,176,53,26)(18,177,54,27)(19,178,55,28)(20,179,56,29)(21,180,57,30)(22,169,58,31)(23,170,59,32)(24,171,60,33)(37,85,117,128)(38,86,118,129)(39,87,119,130)(40,88,120,131)(41,89,109,132)(42,90,110,121)(43,91,111,122)(44,92,112,123)(45,93,113,124)(46,94,114,125)(47,95,115,126)(48,96,116,127)(133,147,181,164)(134,148,182,165)(135,149,183,166)(136,150,184,167)(137,151,185,168)(138,152,186,157)(139,153,187,158)(140,154,188,159)(141,155,189,160)(142,156,190,161)(143,145,191,162)(144,146,192,163), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192)>;

G:=Group( (1,192)(2,181)(3,182)(4,183)(5,184)(6,185)(7,186)(8,187)(9,188)(10,189)(11,190)(12,191)(13,91)(14,92)(15,93)(16,94)(17,95)(18,96)(19,85)(20,86)(21,87)(22,88)(23,89)(24,90)(25,46)(26,47)(27,48)(28,37)(29,38)(30,39)(31,40)(32,41)(33,42)(34,43)(35,44)(36,45)(49,122)(50,123)(51,124)(52,125)(53,126)(54,127)(55,128)(56,129)(57,130)(58,131)(59,132)(60,121)(61,137)(62,138)(63,139)(64,140)(65,141)(66,142)(67,143)(68,144)(69,133)(70,134)(71,135)(72,136)(73,164)(74,165)(75,166)(76,167)(77,168)(78,157)(79,158)(80,159)(81,160)(82,161)(83,162)(84,163)(97,153)(98,154)(99,155)(100,156)(101,145)(102,146)(103,147)(104,148)(105,149)(106,150)(107,151)(108,152)(109,170)(110,171)(111,172)(112,173)(113,174)(114,175)(115,176)(116,177)(117,178)(118,179)(119,180)(120,169), (1,109)(2,110)(3,111)(4,112)(5,113)(6,114)(7,115)(8,116)(9,117)(10,118)(11,119)(12,120)(13,148)(14,149)(15,150)(16,151)(17,152)(18,153)(19,154)(20,155)(21,156)(22,145)(23,146)(24,147)(25,137)(26,138)(27,139)(28,140)(29,141)(30,142)(31,143)(32,144)(33,133)(34,134)(35,135)(36,136)(37,64)(38,65)(39,66)(40,67)(41,68)(42,69)(43,70)(44,71)(45,72)(46,61)(47,62)(48,63)(49,165)(50,166)(51,167)(52,168)(53,157)(54,158)(55,159)(56,160)(57,161)(58,162)(59,163)(60,164)(73,121)(74,122)(75,123)(76,124)(77,125)(78,126)(79,127)(80,128)(81,129)(82,130)(83,131)(84,132)(85,98)(86,99)(87,100)(88,101)(89,102)(90,103)(91,104)(92,105)(93,106)(94,107)(95,108)(96,97)(169,191)(170,192)(171,181)(172,182)(173,183)(174,184)(175,185)(176,186)(177,187)(178,188)(179,189)(180,190), (1,84,68,102)(2,73,69,103)(3,74,70,104)(4,75,71,105)(5,76,72,106)(6,77,61,107)(7,78,62,108)(8,79,63,97)(9,80,64,98)(10,81,65,99)(11,82,66,100)(12,83,67,101)(13,172,49,34)(14,173,50,35)(15,174,51,36)(16,175,52,25)(17,176,53,26)(18,177,54,27)(19,178,55,28)(20,179,56,29)(21,180,57,30)(22,169,58,31)(23,170,59,32)(24,171,60,33)(37,85,117,128)(38,86,118,129)(39,87,119,130)(40,88,120,131)(41,89,109,132)(42,90,110,121)(43,91,111,122)(44,92,112,123)(45,93,113,124)(46,94,114,125)(47,95,115,126)(48,96,116,127)(133,147,181,164)(134,148,182,165)(135,149,183,166)(136,150,184,167)(137,151,185,168)(138,152,186,157)(139,153,187,158)(140,154,188,159)(141,155,189,160)(142,156,190,161)(143,145,191,162)(144,146,192,163), (1,2,3,4,5,6,7,8,9,10,11,12)(13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36)(37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60)(61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84)(85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108)(109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132)(133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156)(157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180)(181,182,183,184,185,186,187,188,189,190,191,192) );

G=PermutationGroup([[(1,192),(2,181),(3,182),(4,183),(5,184),(6,185),(7,186),(8,187),(9,188),(10,189),(11,190),(12,191),(13,91),(14,92),(15,93),(16,94),(17,95),(18,96),(19,85),(20,86),(21,87),(22,88),(23,89),(24,90),(25,46),(26,47),(27,48),(28,37),(29,38),(30,39),(31,40),(32,41),(33,42),(34,43),(35,44),(36,45),(49,122),(50,123),(51,124),(52,125),(53,126),(54,127),(55,128),(56,129),(57,130),(58,131),(59,132),(60,121),(61,137),(62,138),(63,139),(64,140),(65,141),(66,142),(67,143),(68,144),(69,133),(70,134),(71,135),(72,136),(73,164),(74,165),(75,166),(76,167),(77,168),(78,157),(79,158),(80,159),(81,160),(82,161),(83,162),(84,163),(97,153),(98,154),(99,155),(100,156),(101,145),(102,146),(103,147),(104,148),(105,149),(106,150),(107,151),(108,152),(109,170),(110,171),(111,172),(112,173),(113,174),(114,175),(115,176),(116,177),(117,178),(118,179),(119,180),(120,169)], [(1,109),(2,110),(3,111),(4,112),(5,113),(6,114),(7,115),(8,116),(9,117),(10,118),(11,119),(12,120),(13,148),(14,149),(15,150),(16,151),(17,152),(18,153),(19,154),(20,155),(21,156),(22,145),(23,146),(24,147),(25,137),(26,138),(27,139),(28,140),(29,141),(30,142),(31,143),(32,144),(33,133),(34,134),(35,135),(36,136),(37,64),(38,65),(39,66),(40,67),(41,68),(42,69),(43,70),(44,71),(45,72),(46,61),(47,62),(48,63),(49,165),(50,166),(51,167),(52,168),(53,157),(54,158),(55,159),(56,160),(57,161),(58,162),(59,163),(60,164),(73,121),(74,122),(75,123),(76,124),(77,125),(78,126),(79,127),(80,128),(81,129),(82,130),(83,131),(84,132),(85,98),(86,99),(87,100),(88,101),(89,102),(90,103),(91,104),(92,105),(93,106),(94,107),(95,108),(96,97),(169,191),(170,192),(171,181),(172,182),(173,183),(174,184),(175,185),(176,186),(177,187),(178,188),(179,189),(180,190)], [(1,84,68,102),(2,73,69,103),(3,74,70,104),(4,75,71,105),(5,76,72,106),(6,77,61,107),(7,78,62,108),(8,79,63,97),(9,80,64,98),(10,81,65,99),(11,82,66,100),(12,83,67,101),(13,172,49,34),(14,173,50,35),(15,174,51,36),(16,175,52,25),(17,176,53,26),(18,177,54,27),(19,178,55,28),(20,179,56,29),(21,180,57,30),(22,169,58,31),(23,170,59,32),(24,171,60,33),(37,85,117,128),(38,86,118,129),(39,87,119,130),(40,88,120,131),(41,89,109,132),(42,90,110,121),(43,91,111,122),(44,92,112,123),(45,93,113,124),(46,94,114,125),(47,95,115,126),(48,96,116,127),(133,147,181,164),(134,148,182,165),(135,149,183,166),(136,150,184,167),(137,151,185,168),(138,152,186,157),(139,153,187,158),(140,154,188,159),(141,155,189,160),(142,156,190,161),(143,145,191,162),(144,146,192,163)], [(1,2,3,4,5,6,7,8,9,10,11,12),(13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36),(37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60),(61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84),(85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108),(109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132),(133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156),(157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180),(181,182,183,184,185,186,187,188,189,190,191,192)]])

192 conjugacy classes

class 1 2A···2O3A3B4A···4AV6A···6AD12A···12CR
order12···2334···46···612···12
size11···1111···11···11···1

192 irreducible representations

dim11111111
type+++
imageC1C2C2C3C4C6C6C12
kernelC22×C4×C12C2×C4×C12C23×C12C22×C42C22×C12C2×C42C23×C4C22×C4
# reps112324824696

Matrix representation of C22×C4×C12 in GL4(𝔽13) generated by

12000
01200
00120
00012
,
12000
01200
0010
0001
,
1000
0800
0010
00012
,
3000
01100
00120
0005
G:=sub<GL(4,GF(13))| [12,0,0,0,0,12,0,0,0,0,12,0,0,0,0,12],[12,0,0,0,0,12,0,0,0,0,1,0,0,0,0,1],[1,0,0,0,0,8,0,0,0,0,1,0,0,0,0,12],[3,0,0,0,0,11,0,0,0,0,12,0,0,0,0,5] >;

C22×C4×C12 in GAP, Magma, Sage, TeX

C_2^2\times C_4\times C_{12}
% in TeX

G:=Group("C2^2xC4xC12");
// GroupNames label

G:=SmallGroup(192,1400);
// by ID

G=gap.SmallGroup(192,1400);
# by ID

G:=PCGroup([7,-2,-2,-2,-2,-3,-2,-2,336,680]);
// Polycyclic

G:=Group<a,b,c,d|a^2=b^2=c^4=d^12=1,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,c*d=d*c>;
// generators/relations

׿
×
𝔽